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The problem of deducing the climate from the 
governing equations 

By EDWARD N. LORENZ, Massachusetts Institute of Technology’ 

(Manuscript received January 22, 1964) 

ABSTRACT 

The climate of a system is identified with the set of long-term statistical properties. 
Methods of deducing the climate from the equations which govern the system are 
enumerated. These methods are illustrated by choosing a first-order quadratic dif- 
ference equation in one variable as a governing equation. The equation contains a 
single parameter. Particular attention is given to the climatic mean of the single 
variable. 

Analytic methods yield the climate in some cases where the system varies periodi- 
cally, but generally fail when the system varies nonperiodically. Numerical integration 
yields a value of the climatic mean for any individual value of the parameter. Additional 
analytic reasoning is needed to determine the nature of the climatic mean as a function 
of the parameter. 

The progression from steady-state to periodic to nonperiodic behavior, as the para- 
meter increases, is compared to the progression from steady-state to periodic to ir- 
regular flow in the rotating-basin experiments, as the rate of rotation increases. 

1. Introduction 

The continual variations of the state of the 
earth’s atmosphere are presumably governed 
by a set of physical laws. These laws are fre- 
quently expressed as a system of partial dif- 
ferential equations, accompanied by appro- 
priate boundary conditions. It is often assumed 
that the climate, i.e., the set of long-term 
statistical properties of the atmosphere, is 
determined by the same system of equations. 
A fundamental problem in theoretical climato- 
logy is that  of deducing the climate from the 
equations which determine it. This problem 
may be viewed as a special case of the more 
general problem of deducing the statistics of 
solutions of closed systems of equations from 
the equations themselves. 

It should be observed that climate is not uni- 
versally identified with averages over infinite 
time intervals. The fact that such expressions as 
“change of climate” are in common use indicates 
that many investigators are concerned with 

The research reported in this work has been 
sponsored in part by the Air Force Cambridge 
Research Laboratories, under Contract No. AF 
19(628)-2409. A portion of this work was performed 
while the writer was at the National Center for At- 
mospheric Research, Boulder, Colorado. 
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averages over long but finite time intervals. 
I n  this work, however, we shall be exclusively 
concerned with averages (or other statistics) 
over infinite intervals, i.e., with the limits of 
averages over finite intervals, as the lengths 
of the intervals approach infinity. 

From the beginning there are certain compli- 
cating factors which must be recognized. Ob- 
viously there are some systems of equations 
whose solutions become infinite as time in- 
creases, and therefore possess no long-term 
Statistical properties. But even among those 
systems of equations whose solutions remain 
bounded for all time, there are some systems 
which have the property that the average of a 
solution, between two times to  and t , ,  fails to 
approach any limit as t ,  becomes infinite while 
to  remains fixed. I n  other words, there is no a 
priori reason why a climate need exist. 

I n  the special case of the atmosphere, theory 
alone does not tell us that  a climate exists. 
Recourse to observations is not much more 
enlightening; the weather of the current century 
does seem to resemble the weather of the past 
century, but the weather of the past 12,000 
years presumably does not resemble that of 
the previous 12,000 years, when an  ice age 
flourished. 

Next, even if a climate does exist, there is 



2 EDWARD N. LORENZ 

no a priori reason why this climate should be 
unique. There are systems of equations which 
have the property that different solutions, 
originating from different initial conditions, 
possess different long-period averages. 

In some instances, however, if the initial 
conditions are subjected to small but otherwise 
random modifications, while the governing equa- 
tions are not altered, there is a positive prob- 
ability that the resulting climate will be un- 
changed. In such cases the climate will be 
called stable. In other instances, if the initial 
conditions are similarly modified, there is zero 
probability that the resulting climate will be 
unchanged. In these cases the climate will be 
called umtable. 

Again, when a stable climate exists, there is 
no a priori reason why this stable climate 
should be unique. A system possessing a single 
stable climate (and perhaps many unstable 
climates) will be called transitive. A system pos- 
sessing more than one stable climate will be 
called intransitive. 

In  the case of the atmosphere, theory does 
not tell us whether a stable climate, if one 
exists, is unique. Observations also are of no 
avail; the atmosphere is essentially a one-shot 
experiment, and we cannot introduce new 
initial conditions and perform the experiment 
again. 

Assuming, however, that we are dealing with 
a transitive system, let us examine the methods 
by which we may deduce the climate from a 
knowledge of the governing equations. One of 
the most natural approaches consists of deriving 
from the original set of equations a new set of 
equations in which the dependent variables are 
the desired climatological statistics. If the new 
equations can be solved, it is unnecessary to 
obtain the superfluous time-dependent soln- 
tions of the original equations. 

When the original equations are linear, the 
derived equations are in general linear also. In 
such instances, this approach has often proved 
highly fruitful. When the original equations are 
nonlinear, however, the number of variables in 
the new equations inevitably exceeds the num- 
ber of equations, and a finite closed system 
cannot be obtained. The derived equations may 
determine important constraints upon the 
statistics, but usually no complete solution is 
possible. 

At this point the method may be modified 

by the introduction of additional hypothetical 
relations connecting the statistics, in order to 
render the new system closed. These new rela- 
tions may be primarily statistical; for example, 
a variable may be assumed to be normally 
distributed, so that average values of higher 
powers are expressible in terms of means and 
variances. On other occasions the new relations 
may be largely physical; for example, the con- 
vective transport of momentum or heat across 
a given surface may be assumed proportional 
t,o the gradient of momentum or heat across 
the same surface, the factor of proportionality 
being the coefficient of eddy viscosity or eddy 
conductivity. 

On occasions this procedure may yield grati- 
fying results. However, if the assumptions are 
not well justified, the results may be entirely 
unrealistic. 

When i t  is impractical to derive closed 
systems with statistics as variables, the alter- 
native procedure consists of solving the original 
equations, and then computing statistics from 
t2he solutions. In the most favorable cases, 
analytic time-dependent solutions may be found, 
and the climate may be readily evaluated. A 
familiar example of an analytic solution of a 
highly simplified system is ROSSBY’S (1939) 
solution of the vorticity equation; Rossby’s 
well-known expression for the speed of a wave 
is a special statistic of a climate determined by 
his equation. 

Equations whose general solutions oscillate 
irregularly, however, often possess special 
steady-state or periodic solutions which are 
unstable. It is precisely th3se solutions which 
are most readily foiind analytically. Thus there 
is a very real danger of deducing an unst,able 
climate rather than the desired stable climate. 
The failure of Rossby’s formula in actual day- 
to-day weather forecasting (where Rossby did 
not intend to apply it anyway) is easily ascribed 
to the over-simplification of the equation, but 
the formula may also be a statistic of an un- 
stable climate. Real weather patterns never 
contain waves of only one length, and any 
solutions of the real atmospheric equations 
exhibking a single wave length would pre- 
sumably be unstable. 

In the remaining cases, which include those 
where the stable climates are associated with 
irregularly oscillating solutions, numerical pro- 
cedures seem to be indicated. I f  the equations 

Tellus XVI (19G4), 1 
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can be handled numerically at  all, the solutions 
may be treated as data, and the climate may be 
estimated by processing the data. Nevertheless, 
some dangers still remain. Although the 
probability of encountering an unstable climate 
is very small, if the initial conditions are chosen 
randomly, the climate is necessarily computed 
from a finite segment of a time-dependent solu- 
tion. The possibility that this segment will be 
unrepresentative of the total solution is just as 
real as i t  is when a climate is computed from 
actual weather data. 

In this work we shall illustrate these alter- 
native approaches, using an extremely simple 
governing equation. From the results we shall 
draw further conclusions concerning the ap- 
propriateness of the different approaches. 

2. The governing equation 

The usual procedure for solving a system of 
partial differential equations numerically in- 
volves first replacing the system by a system 
of ordinary differential equations. The new 
dependent variables, which are functions of 
time alone, may, for example, be the values of 
the original dependent variables at  a chosen 
set of points. These equations must in turn be 
approximated by a system of difference equa- 
tions. Both these approximations can alter the 
statistical properties of the solutions. 

Wholly apart from these considerations, 
however, the exact integration of a system of 
differential equations over a chosen interval of 
time determines a system of difference relations 
which is exactly equivalent to the original 
equations. When the original equations are 
nonlinear, the equivalent difference equations 
generally cannot be written in finite form in 
terms of familiar analytic functions. The exi- 
stence of the difference equations is assured, 
however, by the existence of solutions of the 
differential equations. 

We t.herefore lose no generality, in choosing 
an arbitrary system of equations to illustrate 
the problem of deducing the climate, if we 
choose a system of difference equations instead 
of differential equations. The alternative meth- 
ods of attack are still available, and they still 
possess their distinctive characteristics. 

In the interests of economy, we shall seek 
the simplest possible system of nonlinear 
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difference equations, among those systems 
capable of generating a stable climate. The 
simplest system is a system consisting of one 
equation in one variable, say 

provided that any such equation can govern a 
climate. We shall require that f ( X )  be single- 
valued and continuous in X. If X, is an arbi- 
t,rarily chosen initial value, equation (1) gene- 
rates the series { X }  = { X o , X l , X 2 ,  ...}, and the 
long-term statistics of this series, if they exist, 
constitute a climate determined by equation (1). 

We observe that if (1) possesses no steady- 
state solution X ,  = X I  = ..., then either X ,  < 
X I  < ... or X, >XI > ..., in view of the continuity 
of f ( X ) .  Hence X ,  + 00 or X, + - 00 aa n + 00, 

since any finite limit would be a steady-state so- 
lution. The series { X }  then possesses no climate. 
We shall therefore require that f ( X )  =X for at  
least one finite value of X .  

The simplest continuous nonlinear function 
f(X) would appear to be a quadratic function. 
Upon replacing the dependent variable X by an 
appropriate linear function of X, we can reduce 
the most general quadratic equation (1) with 
a t  least one steady-state solution to 

x,,, = a x ,  -x ; ,  (2) 

where a 0. 
If a > 4, the choice X ,  = i n  makes X I  >a and 

X , <  0, after which X , +  ~ w as n+m. I f  
however O<a <4, and if O < X ,  <a, then 
0 9 X, <a for all n. We shall therefore choose, 
as our governing equation, equation (2) with 
0 <a 9 4 ,  and require in addition that 0 < 
X ,  <a. 

The parabola in Fig. 1 is a plot of X , , ,  
against X , ,  constructed for the case a =3.75. 
The coordinates of some of the points to which 
we shall later refer are shown. 

Equation (2) represents a transformation of 
the interval [O,a] into a portion of itself. Alter- 
native standard forms, which might be pre- 
ferable for some purposes, would be 

(3)  

transforming the interval [0,1] into a portion 
of itself, and 

x,, * = 4 x'f, - c. ( 4 )  
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for example, if we square both sides of (2) and 
average, we obtain the relation 

- - -  
(a2 - 1)  x2 - 2a XJ + x4= 0. (7)  

I I  I J 
0 Xn 2 4 

FIQ. 1. Graph of the function X,,, =ax, -Xi, for 
the case a=3.75, showing the coordinates of some 
of the points of interest. 

where the slope of the parabola equals the 
abscissa. 

In  the following sections we shall illustrate 
the alternative procedures for deducing the 
climate, using equation (2) as the governing 
equation. We shall pay particular attention to 
the climatic mean 

N - l  

X = l i m  - 2 X,,  ( 5 )  
N+W N n = o  

noting particularly how 2 varies with a. 
For some values of a, equation (2) may be 

shown to be transitive, i.e., to determine a 
unique stable climate. For all other values of a 
between 0 and 4 we shall hypothesize that 
equation (2) is transitive, and speak of the 
value of ;p corresponding to a. We offer no 
proof of transitivity, but the many numerical 
solutions of (2) which we have studied do not 
offer the slightest suggestion of intransitivity. 

3. Analytic methods 

Consider first the procedure of deriving new 
equations whose variables are statistics. Aver- 
aging both sides of equation (2), we obtain the 
relation - 

( a -  1)X-x'=o.  (6) 

This single equation contains two statistics 
;P and %. Any attempt to obtain a closed 
system by deriving further equations containing 
;p or % inevitably introduces new statistics: 

The procedure is therefore not entirely satis- 
factory. 

Although not a closed system by itself, equa- 
tion (6) does place an important constraint upon 
2. With the identity 

where a is the standard deviation of X,, equa- 
tion (6) becomes 

(a - 1)X -22 " U S .  (9) 

Since a' is non-negative, 2 must lie between 0 
and a - 1. I f  0 <a < 1 ,  X is then non-positive, 
and since X ,  is non-negative for all n, the only 
remaining possibility is 8 = O .  For this range 
of a, the problem is solved. If 1 <a 4 4, equation 
(9) imposes the upper limit a - 1 for 2, but it 
does not determine x. 

Consider next the procedure of introducing 
new hypothetical relations to yield a closed 
system. We may, for example, assume that, as 
in a normal distribution, p = O  and x =3, where 
p and x are the skewness and the kurtosis 
of the distribution of X,. With the identities 

(10) * = X3 + 3Xu' t pas, 

- 
X p  = X4 -1 6 X W  + 4pXaS + xu4, (1  1 )  

and the identity (S), equations (6) and (7)  yield 
the equation 

X[X - (a  - 1)][2X' - 2(a + 1)X 

+ ( a % - l ) ]  =o, (12) 

possessing the four roots 

X=O,a-  1, $(a+ l )+&(a+ 1)*(3-a)*. (13) 

All of these roots are real when 0 <a < 3. As 
we shall see when we consider the next method, 
one of these roots correctly characterizes a 
stable climate, but the present method does not 
tell us which root this is. When 3 <a <4, only 
the roots 0 and a - 1 are real; we shall see that 
these are both characteristic of unstable 
climates. 

Tellus XVI (1964). 1 
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Let us now examine the possibility of solving 
equation ( 2 )  analytically. We shall first look 
for periodic solutions of period K ,  for which 
X ,  = X, .  Among these are the steady-state 
solutions, where K = I. 

If { X , , X ,  ,... } and (Y,,Y, ,... } are any two 
solutions of ( 2 ) ,  and if Y ,  = X ,  + E,, then 

where 1, =a - 2X,  is the slope of the parabola 
( 2 )  at the point (X ,+ , ,X , ) .  If X , = X , ,  and 
if E, is sufficiently small, then approximately 

F ,  = h e , ,  (15) 

where 
K - 1  

n - o  
A -  n A n  

is the product of the slopes of the parabola ( 2 )  
a t  K points. A periodic solution is therefore 
stable with respect to small perturbations if 
IAl < l ,  and unstable if IAl >1. If IAl = 1 ,  
further considerations must be invoked to 
determine the stability. 

Considering first the case R = I, we observe 
that X ,  = X I  = ... = O  is always a solution of ( 2 ) .  
The statistics of this solution, including the 
value ;p = 0, therefore constitute a climate. 

For this solution A =a, so that the climate is 
stable if a < 1 (and also if a = l ) ,  but unstable 
if a > 1.  Thus the earlier result that = 0 if 
0 <a < 1 is again obtained. 

When a > l ,  a second steady-state solution 
X ,  =XI =... = a  - 1 exists. For this solution 
A = 2 -a, so that the climate is stable if 1 < a  < 3 
(and also if a =3) ,  but unstable if a >3. Hence 
X = a - 1  if l < a < 3 .  

When a > 3, no stable steady-state solution 
exists, and we consider the case K = 2 .  Letting 
X ,  = X , ,  we obtain the fourth degree equation 

(17 )  X :  - 2aXi + (a2 + a )  X i  - (a' - 1)  X ,  = 0. 

Dividing out the steady state solutions 0 and 
a - 1 ,  we find that X ,  and X ,  are the two roots 
of the equation 

xi - (a+ 1)  x * +  (a + 1 )  = 0. (18) 

For 0 4 a c 3 the roots of ( 1  8) are complex, 
but for a 2 3, they are real. For this solution 

A =  -aP+2a+4,  (19) 

Tellus XVI (1964), 1 

sothat  / A /  < l i f  3<a<1+1/6=3.449.Forthis  
range of a ,  the statistics of the periodic solution 
of period 2 constitute a stable climate, with 

Periodic solutions of higher periodicity could 
be treated similarly. However, X, is an eighth- 
degree polynomial in X, ;  the equation X ,  = X ,  
reduces only to sixth degree when the steady 
state solutions are divided out. Likewise 
X ,  is of sixteenth degree in X , ,  and the equation 
X ,  = X ,  reduces only to twelfth degree after the 
solutions of periods 1 and 2 are divided out. 
Numerical procedures for solving these equa- 
tions would probably be needed to find 2 aa a 
function of a,  and to determine the Stability. 

We therefore turn to the caae a =4,  the one 
remaining case where equation ( 2 )  is readily 
solved analytically. Here, if 

R = )(a + 1). 

X ,  = 4 sin, (no), (20) 

we find by repeated application of ( 2 )  that 

X ,  = 4 sin, (2nn0). (21) 

We see that only the residual of f.3 modulo 1 is 
effective in determining X, .  In  particular, if 
0 is rational, 2,fI eventually differs from 0 by 
an integer, and the solution is periodic. If 0 is 
not rational, the solution is not periodic. 
Moreover, for almost all the nonperiodic 
solutions, the values of 2"O modulo 1 have a 
constant probability density. The correspond- 
ing values of X ,  are symmetrically distributed 
about X ,  = 2, so that X = 2.  The properties 
of this equation have been discussed by ULAM 
(1960, ch. 6), and in further detail by STEIN and 
ULAM (1963, appendix I). 

Figure 2 is a graph of X , , ,  as a function 
of X , ,  for 0 < a  g3.449, and for the single 
value a =4. It will be left to numerical pro- 
cedures to complete the graph, for the re- 
maining values of a. 

4. Numerical methods 

It is a straightforward task to  generate 
numerica1 solutions of equation (2) ,  whose 
accuracy will be limited only by the necessity 
for round-off. Table ( 1 )  presents particular 
solutions, for the cases a =3.14, a =3.75, and 
a = 3.76. In  performing these computations, 
the value of i X , ,  a number between 0 and 1, 
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TABLE 1. Numerically determined solutions of 
the equation X,,, -ax,  xi, with initial values 
X ,  = ja ,  for the cases a =3.74 ,  a =3.75 ,  and 

u =3.76 .  

n x, (3.74) x, (3.75) X ,  (3.76) 

0 1.870 1.875 1.880 
1 3.49i 3.516 3.534 
2 0.850 0.824 0.797 
3 2.457 2.41 1 2.362 
4 3.153 3.228 3.302 
5 1.852 1.684 1.513 
6 3.497 3.479 3.400 
i 0.851 0.942 1.225 
8 2.459 2.646 3.106 
9 3.150 2.922 2.033 

1 0 1.858 2.420 3.511 
11 3.497 3.218 0.874 
12 0.850 1.711 2.522 
13 2.457 3.489 3.122 
14 3.152 0.912 1.991 
15 1.854 2.588 3.522 

was rounded off at each step to 28 bits in t,ho 
memory of the computer. 

I n  each case the initial value X ,  =&a was 
chosen. It can be shown that if a stable periodic 
solution { Y }  = { Y o ,  Y l ,  ...} of period K exists, 
the particular solution { W }  = { W , ,  Wl, ...} with 
W ,  = l a ,  must approach the solution { Y }  
asympt>ot ically . 

/ 
FIG. 2. Graph of R as a function of a, for the interval 
0 < a  C 1 + 1 6 ,  and for the single point a = 4. 

- 

For the case a = 3.74, the solution is evidently 
asymptotic to  a stable periodic solution of 
period 5. In general, when a stablc periodic 
solution is discovered, t.he appropriate value of 

may be obtained by averaging the values of 
X ,  for a single period. 

For the cases a = 3.75 and a = 3.76, no periodi- 
city is evident. Here, and in general when the 
solution is nonperiodic, a value of may be 
estimated by extending the solution to a high 
value of n, and then averaging all the values 
of X,. This value of ;p is indeed an estimate and 
not a precise value, since i t  is based upon a finite 
sample of values of X,, which may not bt. 
representative of a complete solution. This 
procedure also affords an estimate of when a 
stable periodic solution does exist, provided 
that the chosen solution approaches the periodic 
solution asymptotically, which will be the case 
if X ,  = la. 

For any particular value of a,  then, the pro- 
blem of determining the corresponding valot! 
of would appear to  be solved. Figure 3 

To prove this thcorem, lct U ,  and V ,  be rc- 
spectively the greatest lower bound of those X ,  < Yo. 
and the least upper bound of those X, > Yo, for 
which { X }  does not approach { Y }  asymptotically. 
If W ,  does not lie within one of the intervals (U,, V,), 
...,(uK-i, V K - l ) ,  the mappings (uo7 v,)*(u,, V , ) e  
...*( U,, VK) are all one-to-one, and, for n = 1 ,..., 
K , U ,  and V,, or V ,  and U,, are respectively the 
greatest lower bound of those X,< Y,, and the 
least upper bound of those X,> Y,, for which { X }  
does not approach { Y }. But Y ,  = Yo,  so U ,  = U ,  
and V ,  = V,: or U ,  = Yo and V, = U,, and { U }  and 
{ V }  are periodic of period K ,  or 2K. Moreover { U }  
and { V }  are unstable solutions, since neighboring 
solutions approach { Y } ,  not { U }  or { V } .  Thus 
n.-np,,v, > 1, wherep, = a - 2 U ,  and v, = a  - 2 8 ,  are 
slopes of the parabola (2) .  Moreover }in and v, have 
the same sign, so pnvn > 0. 

k - 1  

Since pn ,i - v n  t i  - h(/Ln + Vn) ( f i n  - vn), 

which is a contradiction. Hence W .  lies within some 
int,erval (U,, V,) and { W }  approaches { Y }  asympto- 
tically. 

Tellus XVI (1964), 1 
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i l  2.0 

i:; 
I 

1 
a 35 4 0  

FIG. 3. Graph of X as a function of a, as estimated 
for the interval 3.4 I. a ,  4. 

represents a completion of Fig. 2, with estimated 
values of 3. For values of a from 3.400 to 
3.995, a t  intervals of 0.005, solutions of equa- 
t,ion (2) were obtained numerically, in each case 
with X ,  =&a. The first 1024 values of X ,  were 
then averaged, yielding the indicated values 
of x. 

The most striking characteristic of the curve 
in Fig. 3 is its irregularity. It seems unlikely 
that the curve can be represented or even closely 
approximated by any simple combination of 
familitrr analytic functions. Indeed, we are 
forced to conclude that while the problem of 
determining K for any particular value of a 
may in essence be solved, the problem of dis- 
covering just how x varies with a is far from 
solved. 

5. Further considerations 

Probably the most unexpected feature of 
Fig. 3 is the fairly broad band of values of a 
(from 3.830 to 3.855) in which the estimated 
values of fall far short of the values of x 
for slightly lower or higher values of a. Although 
some of the smaller irregularities in Fig. 3 might 
be attributable to sampling errors, it is unreason- 
able to expect that sampling would produce a 
band of this sort. 

Inspection of the successive values X , , X , ,  ... 
for a =3 .83  reveals the proper explanation for 
t,he low values of x; there is a stable periodic 
SOhtiOR of period 3, and is simply the 

Tellus XVI (1964), 1 

average of the three values. Likewise, the less 
conspicuous band at  a = 3.74 corresponds to 
the stable solution of period 5, which is exhibited 
in Table 1. If anything requires further ex- 
plaining, it is not the low values of 2 in the 
bands, but the higher values outside the bands. 

We shall call a value of a for which a stable 
periodic solution of period K exists a periodic 
value of a, of order K.  Values of a which are not 
periodic of any order will be called nonperiodic. 
Evidently the irregularity of Fig. 3 depends 
upon the arrangement of periodic and non- 
periodic values of a. We shall first consider some 
properties of periodic values. 

For each value of a, let { W ( a ) }  = {Wo,Wl,  ...} 
be the particular soIution with W, =$a (see 
Fig. 1). Then W ,  =a2/4, and in general W ,  is 
a polynomial of degree 2, in a. 

Suppose that for some valuc a,  of a, W,= 
W ,  for some K .  Then, since A, =a, -2W, = 0, 

= 0, and the solution { W } is stable. Hence 
a, is a periodic value. We shall call any periodic 
value of a for which W ,  = W ,  a central value of 
a, of order K .  Since W ,  is a polynomial, the set 
of central values of order K is finite, and thc 
set of all contra1 values is denumerable. 

Next, if a, is a central value of order K ,  and 
if a is sufficiently close to a,, the equation 
X,(a) =X,(a)  will have a root Yo(a)  close to 
W,(a,). Moreover, for the periodic solution 
{ Y(a)  }, A will be small, and the solution will 
be stable. Thus, about each central value of a, 
of order K ,  there is a continuum of periodic 
values of a, of order K.  We shall call such a 
continuum a periodic band. The K values 
Po, ..., YK-, are roots of an algebraic equation 
(equation (18) in the case K =2), and are 
analytic functions of a within the periodic band. 

The converse of this result appears to be true 
also, i.e., any periodic value of a of order K lies 
within a periodic band, containing a single 
central value a,. We offer no rigorous proof 
for this assertion; it is merely indicated by the 
study of many individual numerical solutions, 
which have failed to reveal any exceptions. 

Thus, setting W ,  = W,, we find that a, = 2  is 
a central value of a of order 1, while the analytic 
solution X ,  = a  - 1 is stable within the band 
1 < a  < 3  surrounding a,. Likewise, setting 
W ,  = W,, we find that a, = 1 +1/5 =3.236 is a 
central value of order 2. Surrounding a ,  is the 
periodic band 3 <a < 3.449. 

We observe that a, and a2 are the highest 
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central values of orders 1 and 2 respectively. 
If for some K > 2  there exists a highest central 
value a,  of order K ,  and if 2 < a K < 4  then 
W,+,(a,) = W,(a,) > W,(a,) (cf. Fig. l ) ,  while 
W,+,(4) = 0. Therefore, by continuity of WK+,, 
there exists a greatest value a,+*, with a, < 
a,+, < 4 ,  for which W,+,(U,+,) = W , ( U , + ~ ) ,  i.e., 
a greatest central value of order K + 1. The 
existence of a sequence of central values a, < 
a, <a8 < ... < 4  is thus established by induction. 

Since X,+, > X ,  if X ,  < W ,  (if a > 2 ;  cf. Fig. l ) ,  
it follows that for K 2 3 ,  W,(a,) < ... < 
W,-,(a,) < W,. The increasing sequence a,, 
a,, ... must approach a limit a‘; it follows by 
continuity that W,(a’) < W,(a’) for all values of 
n > 2.  This is clearly impossible if W,(a’) > 0, i.e., 
if a’ <4;  hence a’ = 4 .  

For large K ,  W,(aK)  and, indeed, all but a 
small number of the values W,(a,), ..., W,-,(a,), 
will be close to zero. Hence x(aK) will be small; 
in fact, as K+m, x(a,)+O (far lower than 
anything suggested by Fig. 3).  

The numerical values of a, and x(a,) are 
readily estimated. Letting a,  = 4 - E,, where 
E, is small, we find that to first-order terms in 
E,, W ,  = 2  - i ~ ~ ,  W ,  = 4  - 2 ~ , ,  and W ,  = 4 ~ , .  
Working backward from W,, and neglecting 
terms in E ~ ,  we find in view of equation (21) 
that W ,  = 2 = 4 sin2 x / 4 ,  W,-, = 4 sin2 nlt3 and 
finally W ,  = 4 sin2 ~ 1 2 , .  Equating the values 
of W,,  and replacing the sine of a small argu- 
ment by the argument itself, we find that, 
approximately, 

a,  = 4 - n2/4,. (22 )  

Again neglecting terms in E,, we find that 

4 ,  
K n-1  

x(a,) = - IT s i n ~ n / 2 ~  = 6.8281K. (23) 

Thus there is a sequence of central values 
a,,a,,..., approaching 4 as a limit, for which the 
corresponding values X(a,),  x (a , ) ,  ... approach 
zero as a limit. In  the neighborhood of a = 4 ,  
then, the behavior of x as a function of a is 
far more complicated than Fig. 3 is able to 
represent. 

Values of a, and X(a,) may also be deter- 
mined numerically, using a trial and error 
procedure. Table 2 shows the values so deter- 
mined. Values of a,  and x ( a K )  given by the 
approximations (22) and (23) are presented 
for comparison. Also shown are the lower and 

TABLE 2.  Numerically determined values of central 
values a,, lower and upper bounds a& and a; of 
the periodic bands surrounding a,, and mean 
values x(aK), and approximations a; and x’ 
to  a ,  and X given by formulas (22 )  and (23 )  

respectively. 

K 1 2  3 4 5 

- 
UK 1.00 3.000 3.8284 3.96010 3.990258 
UK 2.00 3.236 3.8319 3.96027 3.990267 

+ 3.00 3.449 3.8401 3.96047 3.990281 a? 
ax 1.53 3.383 3.8458 3.96145 3.990462 

;P 1.000 2.118 2.059 1.661 1.351 
X’ 6.828 3.414 2.276 1.707 1.366 

upper bounds a i  and a; of the periodic band 
surrounding a,, determined numerically by 
trial and error. The extreme narrowness of the 
bands for large values of K is apparent; indeed, 
the approximations to a,, although very close, 
fall outside the true periodic bands. 

Next, since W,-,(a,-,) > 1 and W,-,(a,) < 1 
if K 23, there exists a b,, with a,-, ( 6 ,  <agr 
such that WK-,(bK) = 1. Then W, = W,,, = ... = 

b,-1. The steady state solution x,(b,) = 

b ,  - 1 is unstable. Since a solution { W }  is 
always asymptotic to a stable periodic solution, 
when such a solution exists, i t  follows that there 
is no stable periodic solution when a =b,,  
whence b ,  is a nonperiodic value. The long-term 
statistics are therefore the statistics of a non- 
periodic solution, just as in the case when a = 4. 

Now suppose that a = b h ,  where bh  - 6 ,  is 
very small (small even compared to 4 - b K ) .  
Then by continuity, W,(bh) is close to bk - 1. 
Since the slope I ,  of the parabola a t  ( b h  - 1, 
bh - 1) is about - 2 ,  the successive values 
WK+, ,  WK+,, ... lie on alternate sides of b k  - 1, 
each about twice as far from bk - 1 as its prede- 
cessor, until they are no longer close to b k  - 1. 
By suitably adjusting the value of b k ,  then, we 
may assure ourselves that for any chosen integer 
M > O ,  W,+,(bk) = W,. Let C,, denote the 
value of bh so determined.Then C,, is a periodic 
value of a, of order K +M. 

Thus there exists a sequence of values C K l ,  
C,,, ... of a, approaching b, as a limit, for 
which WK+, (CKM) ,  WK+, (CKM) ,  ... are very close 
to b ,  -1 ,  while WK+,(CKM) = W,. It follows 
that for fixed K ,  the sequence ~ ( C K , ) ,  

Tellus XVI (1964), 1 
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g(C,,), ... approaches b, - 1 as a limit as 
M-tco, even though X(b,) is not equal to 

The inadequacy of Fig. 3 is thus further 
revealed. Surrounding each point of an infinite 
sequence b l ,  b2, ..., there is an infinite collection 
of periodic bands of values of a, in which the 
corresponding values of approximate a - 1. 
In  part,icular, the sequence CK, K: approaches 
4 as K + 03, while x ( c ,  K:) +3 (far higher than 
anything suggested by Fig. 3). 

We have thus "explained" the irregularity 
of Fig. 3; there are numerous bands of periodic 
values of a for which ;p is very low, including 
some where ;p is near zero. Separating these 
bands are other bands where 2 is very high, 
including some where ;p is near 3. The curve of 
;p against a must therefore undergo wild oscil- 
lations. 

We shall close this section with some specula- 
tions concerning the prevalence of nonperiodic 
values of a. Again, our conclusions will be based 
partly on hypotheses suggested by the study 
of many numerical solutions. 

In  all cases investigated numerically, if a' 
and a" are two distinct nonperiodic values of a, 
the sequences { W(a') ) and { W(a") ] diverge 
from one another until, for some K ,  W,(a')/a' < 
1/2 < W,(ar)/an. It follows by continuity that 
for some value of a, between a' and a", W,(a) = 

a12 = W,,, i.e., a is a central value. Surrounding 
a there is then a periodic band, which must lie 
entirely between a' and a". 

In  Table 1, for example, the solutions 
(W(3.75)) and {W(3.76)) are fairly close 
together for n < 6, but have lost all resemblance 
when n = 11. There must exist a periodic value 
of a, of order 11, somewhere between 3.75 and 
3.76. 

In short, every pair of nonperiodic values of a 
is separated by a continuum of periodic values. 
The periodic values therefore form an every- 
where dense set, and moreover the nonperiodic 
values form a nowhere dense set; i.e., arbitrarily 
close to any value of a there can be found a 
periodic value which itself lies within a con- 
tinuum of periodic values. There are no con- 
tinua of nonperiodic values. 

One might suppose, then, that almost all 
values of a are periodic, in the sense that there 
is zero probability that a randomly selected 
value of a is nonperiodic. Such a conclusion 
is by no means justified; it is easy to construct 
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a nowhere dense set, analogous in some ways 
to the set of nonperiodic values of a, which may 
be shown to have positive measure. 

Consider the unit interval 0 < a < 1. The points 
of the form am,, = (2m - 1)/2,, form a denumer- 
able subset which is everywhere dense. About 
each point am, construct an interval of length 
2-an. The sum of the lengths of all these intervals 
is f, and, since some of the intervals overlap, 
the measure of the set of all points contained 
in these intervals is less than f. The set of points 
not contained in these intervals therefore has a 
measure greater than f, and this set is nowhere 
dense. 

The crucial point is that the widths of the 
intervals decrease very rapidly as n increases. 
This feature seems to have its analogy in the 
periodic bands. Certainly the widths of the 
bands about the central points aK decrease very 
rapidly as K increases, according to the data in 
Table 2. Although the range 0 <a G3.449 con- 
sists entirely of periodic values, it seems highly 
likely that in the range 3.9 <a 4, for example, 
a large majority of the values are nonperiodic. 

However, the only individual values of a 
which we have identified as being nonperiodic 
are those for which WK+,=WK for some K 
and some M ,  while W ,  * W,. There are only a 
denumerable number of values of this sort, 
since for a particular K and M the equation 
WK+M = W ,  has a finite number of roots. 

6. Concluding remarks 

We have presented several procedures by 
which the climate, or the long-term statistical 
properties of a system, might be deduced from 
the equations governing the system. We have 
illustrated these procedures by means of a 
first-order quadratic difference equation in one 
variable. By specifically choosing the simplest 
possible nonlinear governing equation, we have 
abandoned any direct effort to make the system 
resemble the atmosphere, or any other real 
physical system. It is noteworthy then that, 
as far as its solutions are concerned, our equa- 
tion resembles certain hydrodynamic systems 
in spite of itself. 

Consider, for example, the laboratory experi- 
ments of HIDE (1958) and FULTZ (1959), in 
which a circularly symmetric vessel containing 
water is rotated about its (vertical) axis, while 
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being heated near its rim and cooled near its 
center. If the apparatus rotates slowly enough, 
the resulting flow is also symmetric about the 
axis. At slightly higher rates of rotation, partic- 
ularly when the vessel is annular in shape, 
waves develop, and travel around the annulus 
a t  a uniform rate, without changing their shape. 
At still higher rotation rates the waves vacillate, 
i.e., they alter their shape in a regular periodic 
fashion. At even higher rotation rates, the waves 
progress and alter their shape irregularly. 

Let us agree to identify the parameter a in 
our simple difference equation (2) with the rate 
of rotation in the laboratory experiments, and 
let us identify the variable X ,  with the kinetic 
energy of the waves. We then find that for the 
slowest rotation (0 <a < l ) ,  X ,  approaches zero, 
i.e. there are no waves. For somewhat higher 
rotation rates (1 <a < 3 ) ,  X ,  approaches a 
positivc constant u - 1 ,  i.e., the waves exist, 
and their energy remains constant with time. 
For still higher rotation rates (3  <a <3.449), 
X ,  oscillates periodically between two values, 
i.e., the waves vacillate. Finally, for at  least 
some of the highest rotation rates (3.449 <a < 4) ,  
X ,  oscillates nonperiodically, i.e., the waves 
move irregularly. 

Other analogies could also be drawn; for 
example, the appearance of successively more 
complicated forms of convection as a Rayleigh 
number increases, or the progression from lami- 
nar motion to complicated turbulence as a 
Reynolds number increases. 

The writer feels that this resemblance is no 
mere accident, but that the difference equation 
captures much of the mathematics, even if not 
the physics, of the transitions from one regime 
of flow to another, and, indeed, of the whole 
phenomenon of instability. In  the instances 
just mentioned, a more complicated type of 
flow sets in as soon as the simpler flow bccomes 
unstable with respect to perturbations of small 
amplitude. In other instances, a more compli- 
cated flow may set in when a simpler flow goes 
out of existence altogether. Thus equation (2) 
possesses a stable solution of period 3 when 
3.828 <a < 3.840. The solution still exists, but 
is unstable, when a >3.840, but no solution of 
period 3 exists at  all when a < 3.828. 

Having presented a case for a close mathe- 
matical analogy between a simple difference 
equation in one variable and a complicated 
system of hydrodynamic equations, let us see 

what is to be learned from our attempts to 
deduce the climate governed by the difference 
equation. Because the real atmosphere varies 
in a somewhat irregular fashion, we must con- 
cede that the difference equation is a better 
analogue of the atmosphere for the higher 
values of a (say between 3.449 and 4) .  Because 
of the failure of purely analytic methods to 
yield values of 2 for many of these values of a,  
and because of the relative ease of determining 
2, for any particular value of a, by solving the 
equation numerically, we might conclude that, 
straightforward numerical integration affords 
the best method of deducing climate. 

However, we have found that for determining 
the nature of x as a function of a, the numerical 
procedure alone leaves much to be desired. The> 
graph of against a (Fig. 3) reveals the rather 
broad band near a =3.84 where R is relatively 
small; it does not suggest the existence of con- 
siderably narrower bands where ff is even 
smaller. It is true that these bands would even- 
tually be detected if 2 were computed for more 
and more values of a, but the bands are so 
narrow that it is questionable whether one 
would continue the search to the point of 
discovering them. The bands with very high 
values of 8 are narrower still. 

Straightforward analytic reasoning, on the 
other hand, readily reveals the existence of 
bands where x is very low, and also where 
is very high. Yet the reasoning necessary to 
establish the existence of these bands might 
never have been performed, had not the 
numerical procedure revealed the first band. 

Analytic reasoning also yields an interesting 
result concerning the probability that a stable 
periodic solution will exist if a is chosen a t  
random. Here, however, the result is not rigo- 
rously proven; it merely follows if certain hypo- 
theses are accepted. These very hypot,heses 
might never have been formed without previous 
examination of the numerical solutions. 

We thus see that a computing machine may 
play an important role, in addition to simply 
grinding out numerical answers. The machine 
cannot prove a t,heorem, but it can suggest a 
proposition to be proven. The proposition may 
then be proven and established as a theorem 
by analytic means, but the very existence of the 
theorem might not have been suspected without 
the aid of the machine. 

ULAM (1960, Ch. 8) has discussed the general 
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problem of the computing machine as a heuristic 
aid to mathematical reasoning, and has pre- 
sented examples from a number of different 
branches of mathematics. 

As for the problem of deducing the climate, 
this would appear to be best handled by numeri- 
cal integration, preferably with the most power- 
ful computing machine available, accompanied 
by a large amount of careful mathematical 
reasoning. 
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