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Self-organization is frequently observed in active collectives as varied as ant rafts and molecular
motor assemblies. General principles describing self-organization away from equilibrium have been
challenging to identify. We offer a unifying framework that models the behavior of complex systems as
largely random while capturing their configuration-dependent response to external forcing. This allows
derivation of a Boltzmann-like principle for understanding and manipulating driven self-organization. We
validate our predictions experimentally, with the use of shape-changing robotic active matter, and outline
a methodology for controlling collective behavior. Our findings highlight how emergent order depends
sensitively on the matching between external patterns of forcing and internal dynamical response
properties, pointing toward future approaches for the design and control of active particle mixtures and
metamaterials.

S
elf-organization in nature is surprising
because getting a large group of separate
particles to act in an organized way is
often difficult. By definition, arrangements
of matter we call “orderly” are special,

making up a tiny minority of all allowed con-
figurations. For example, we find each unique,
symmetrical shape of a snowflake visually
striking, unlike any randomly rearranged
clump of the same water molecules. Thus, any
theory of emergent order in many-particle col-
lectives must explain how a small subset of con-
figurations are spontaneously selected among
the vast set of disorganized arrangements.
Spontaneousmany-body order is well under-

stood in thermal equilibrium cases such as
crystalline solids or DNA origami (1), where
the assembling matter is allowed to sit un-
perturbed for a long time at constant temper-
ature T. The statistical mechanical approach
proceeds by approximating the complex de-
terministic dynamics of the particles with a
probabilistic “molecular chaos,” positing that
the law of conservation of energy governs
otherwise random behavior (2). What follows
is the Boltzmann distribution for the steady-
state probabilities,pss(q)º exp[–E(q)/T], which
shows that the degree to which special con-
figurations q of low energy E(q) have a high
probability pss(q) in the long term depends
on the amplitude of the thermal noise. Orderly
configurations can assemble and remain stable,
so long as interparticle attractions are strong
enough to overcome the randomizing effects
of thermal fluctuations.
However, there are also many examples of

emergent order outside of thermal equilib-

rium. These include “random organization”
in sheared colloids (3), phase separation in
multitemperature particle mixtures (4), and
dynamic vortices in protein filaments (5). A
variety of ordered behaviors arise far from
equilibrium that cannot be explained in terms
of simple interparticle attraction or energy
gradients (6–9).
In all of these examples, the energy flux

from external sources allows different system
configurations to experience fluctuations
of different magnitude (10, 11). We suggest
that the emergence of such configuration-
dependent fluctuations, which cannot happen in
equilibrium,may be key to understandingmany
nonequilibrium self-organization phenome-
na. In particular, we introduce a measure of
driving-induced random fluctuations, which
we term rattlingR(q), and argue that it could
play a role in many far-from-equilibrium sys-
tems similar to the role of energy in equilib-
rium. We test this in a number of systems,
including a flexible active matter system of
simple robots we call “smarticles” (smart active
particles) (12) as a convenient test platform (see
movie S1) inspired by similar robo-physical
emulators of collective behavior (13–15). De-
spite their purely repulsive inter-robot inter-
actions, we find that smarticles spontaneously
self-organize into collective “dances,” whose
shape and motions are matched to the tem-
poral pattern of external driving forces (movies
S2 and S3). This platform and others (16–18),
including the nonequilibrium ordering exam-
ples mentioned above, all exhibit low-rattling
ordered behaviors that echo low-energy struc-
tures emergent at equilibrium. We thus moti-
vate and test a predictive theory based on
rattling that may explain a broad class of
nonequilibrium ordering phenomena.
In devising our approach, we take inspira-

tion from the phenomenon of thermophoresis,
which is the simplest example of purely non-

equilibrium self-organization. Thermophore-
sis is characterized by the diffusion of colloidal
particles from hot regions to cold regions (19).
If noninteracting particles in a viscous fluid
are subject to a temperature T(q) that varies
over position q, their resulting density in the
steady-state pss(q) will concentrate in the re-
gions of low temperature. Particles diffuse to
regions where thermal noise is weaker, and
they become trapped there. With the diffusiv-
ity landscape set by thermal noise locally ac-
cording to the fluctuation-dissipation relation
D(q) º T(q) (20), the steady-state diffusion
equation ∇2[D(q)pss(q)] = 0 is satisfied by the
probability density pss(q)º 1/D(q). Hence,
a low-entropy, “ordered” arrangement of
particles can be stable when the diffusivity
landscape has a few locations q that are
strongly selected by their extremely lowD(q)
values.
We seek to extend this intuition to explain

nonequilibrium self-organization more broadly.
However, a straightforward mathematical ex-
tension of the idea encounters challenges in
only slightly more complicated scenarios. For
an arbitrary diffusion tensor landscape D(q),
in which diffusivity can depend on the direc-
tion ofmotion, one can no longer find general
solutions for the steady state. Moreover, the
steady-state density pss(q) at configuration q
may depend on the diffusivity Dð~qÞ at arbi-
trarily distant configurations ~q. Nonetheless,
we suggest that for most typical diffusion
landscapes, the local magnitude of fluctua-
tions |D(q)| should statistically bias pss(q)
and hence should be approximately pre-
dictive of it. This insight, which is central
to our theory, is illustrated to hold numer-
ically in Fig. 1A for a randomly constructed
two-dimensional anisotropic landscape, and
in fig. S3 for higher dimensions. Although
contrived counterexamples that break the
relationshipmay be constructed, they require
specific fine-tuning (see fig. S4).
The key assumption underlying our approach

is that the complex system dynamics are so
messy that only the amplitude of local drive-
induced fluctuations governs the otherwise
random behavior—an assumption inspired
bymolecular chaos at equilibrium.We expect
this to apply when the system dynamics are
so complex, nonlinear, and high-dimensional
that no global symmetry or constraint can be
found for its simplification. Although one
cannot predict a configuration’s nonequili-
brium steady-state probability from its local
properties in the general case (21, 22), the feat
becomes achievable in practice for “messy”
systems. To illustrate this point explicitly, we
consider a discrete dynamical systemwith ran-
dom transition rates between a large number
of states. Here, we can show analytically that
the net rate at which we exit any given state
predicts its long-termprobability approximately,
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even though the exact result requires global
system knowledge (see Fig. 1B and supplemen-
tary materials for derivation). This result may
be related to the above discussion of thermo-
phoresis by noting that the discrete state exit
rates are determined by the continuum diffu-
sivity if our dynamics are built by discretizing
the domain of a diffusion process.
To formulate our randomdynamics assump-

tion explicitly, we represent the complex sys-
temevolution as a trajectory in timeq(t), where
the configuration vector q captures the proper-
ties of the entire many-particle system. Our
messiness assumption amounts to approximat-
ing the full complex dynamics between two
points q(t) and q(t + dt) by a random diffusion
process. To this end, we take the amplitude of
the noise fluctuationsD(q) to locally reflect the
amplitude of the true configuration dynam-
ics: |q(t + dt) – q(t)|2 º D(q)dt for short
rollouts q(t → t + dt) (i.e., samples of system
trajectories) of duration dt initialized in con-
figuration q(t) = q (see supplementary mate-
rials for details). Through this approximation,
our dynamics are effectively reduced to diffu-

sion in q-space, which then allows us to locally
estimate the steady-state probability of system
configurations fromD(q) as in thermophoresis.
Hence, the global steady-state distributionmay
be predicted from the properties of short-time,
local system rollouts.
For rare orderly configurations to be strongly

selected in a messy dynamical system, the
landscape of local fluctuations must vary
in magnitude over a large range of values.
Whereas in thermophoresis these fluctuations
are directly imposed by an external temper-
ature profile, in driven dynamical systems the
range ofmagnitudes results from theway a given
pattern of driving can have a different effect on
different system configurations. The D(q) land-
scape is emergent from the interplay between the
pattern of driving and the library of possible
q-dependent system response properties. In
practice, we observe that the amplitudes of
system responses to driving do often vary
over several orders of magnitude (Fig. 1). We
see this phenomenology in many well-known
examples of active matter self-organization
(3, 11, 23). For example, the crystals that form

in suspensions of self-propelled colloids in
(24) may be seen as the collective configu-
rations that respond least diffusively to driving
by precisely balancing the propulsive forces
among individual particles. This illustrates how
the low-D(q) configurations are selected in the
steady state by an exceptional matching of
their response properties to the way the
system is driven.
We apply these ideas in real complex driven

systems whose response to driving we cannot
predict analytically, such as our robotic swarm
of smarticles. In this case, we require an es-
timator for the local value of D(q) based on
observations of short rollouts of system be-
havior. The estimator of the local diffusion
tensor that we choose here is the covariance
matrix

CðqÞ ¼ cov½~vq ; ~vq � ð1Þ

(25), where ~vq is seen as a random variable
with samples drawn from fð~qðtÞ � ~qð0ÞÞ=
ffiffi

t
p gqð0Þ¼q at various time points t along one
or several short system trajectories ~qðtÞ rolled

Chvykov et al., Science 371, 90–95 (2021) 1 January 2021 2 of 6

Fig. 1. Rattling R is predictive of steady-state likelihood across far-
from-equilibrium systems. (A) Inhomogeneous anisotropic diffusion in two
dimensions, where the steady-state density pss(q) is seen to be approximately
given by the magnitude of local fluctuations log|D(q)| º R(q) (where |D| is
the determinant of the diffusion tensor). (B) A random walk on a large
random graph (1000 states), where Pss, the probability at a state, is
approximately given by E, that state’s exit rate. (C) An active matter system
of shape-changing agents: an enclosed ensemble of 15 “smarticles” in
simulation. (D) Experimental realization of similar agents with an enclosed
three-robot smarticle ensemble. The middle row shows that relaxation to the

steady state of a uniform initial distribution is accompanied by monotonic
decay in the average rattling value in all cases, analogous to free energy in
equilibrium systems. The bottom row shows the validity of the nonequilibrium
Boltzmann-like principle in Eq. 3, where the black lines in (A), (B), and (C)
illustrate the theoretical correlation slope for a sufficiently large and complex
system (see supplementary materials). The mesoscopic regime in (D)
provides the most stringent test of rattling theory (where we observe
deviations in g from 1), while also exhibiting global self-organization. In the
middle row, time units are arbitrary in (A) and (B); time is in seconds in (C)
and (D), where the drive period is 2 s.
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out from ~qð0Þ ¼ q. We assume these rollouts
~qðtÞ to be long enough to capture fluctua-
tions in the configuration variables under the
influence of a drive, but short enough to have
~qðtÞ stay near q (see supplementary materials
for details).
Although the covariance matrix reflects the

amplitude of local fluctuations, we are instead
interested in a measure of their disorder if
we want to estimate the effective diffusivity.
This follows from the observation that high-
amplitude ordered oscillations do not con-
tribute to the rate of stochastic diffusion (10).
We suggest that the degree of disorder of
fluctuations may be captured by the entropy
of the distribution of ~vq vectors, which is how
we define rattlingR(q). Physically, vectors ~vq
capture the statistics of the force fluctuations
experienced in configuration q, and so rattling
measures the disorder in the system’s driven
response properties at that point. By approx-
imating the distribution of ~vq as Gaussian, we
can express its entropy (up to a constant offset)
simply in terms of C(q) as

RðqÞ ¼ 1

2
log det CðqÞ ð2Þ

With this definition, we generalize the thermo-
phoretic expression for the steady-state density

pss(q)º 1/D(q) and express it in a Boltzmann-
like form:

pssðqÞºexp½�gRðqÞ� ð3Þ
where g is a system-specific constant of order 1
(see supplementary materials for derivations).
We note that when energy varies on the same
scale as rattling, the interaction between the
two landscapes can generate strong steady-
state currents and may break this relation
(10). Thus, rattling enables us to predict the
long-term global steady-state distribution based
on empirical measurements of short-term local
systembehavior,which suggests that probability
density accumulates over time in low-rattling
configurations.
We study the collective behavior of a simple

ensemble of smarticles, aligning ourselves
within the tradition of using robotic systems
as flexible, physical emulators for self-organizing
natural systems (13–16). Each smarticle (Fig. 2A)
is composed of three 5.2-cm links, with two
hinges actuated by motors programmed to
follow a driving pattern specified by a micro-
controller. When a smarticle sits on a flat
surface, its arms do not touch the ground, so
an individual robot cannot move. However, a
group of them can achieve complex motion
by pushing and pulling each other (movie S1)
(26). The relative coordinates of the middle

link of each robot in the ensemble (x, y, q)
may be thought of as the internal system con-
figurations that dynamically respond to an ex-
ternally determined driving force arising from
the time variation of arm angles (a1, a2) (27).
This robotic active matter system offers sub-

stantial flexibility in choosing the programmed
patterns of driving as well as the properties of
internal system dynamics (friction coefficients,
weights, etc.). Additionally, the smarticle sys-
tem has a flat potential energy landscape, al-
lowing one to focus on the contributions of
the drive-induced fluctuations to the collective
behavior, which makes our findings broadly
applicable to other strongly driven systems.
When the smarticles are within contact range
(as ensured by a confining ring; Fig. 1D), the
forces experienced throughout the collective
for a given pattern of arm movement are an
emergent function of all system coordinates.
This configuration-dependent forcing gives rise
to varying rattling values, which we refer to
as the “rattling landscape,” and which we see
to be a hallmark property in many far-from-
equilibrium examples. The rattling landscape
then leads to some system configurations being
dynamically selected over others and allow-
ing for self-organization, just as the diffusivity
landscape does in thermophoresis. Finally,
the combined effects of impulsive inter-robot
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Fig. 2. Self-organization in a smarticle robotic ensemble. (A) Front, back, and
top views of a single smarticle. Of its five degrees of freedom, we consider the time-
varying arm angles (a1, a2) as “external” driving, because these are controlled
by a preprogrammed microcontroller, whereas the robot coordinates (x, y, q) are
seen as an “internal” system configuration, because these respond interdependently
to the arms. (B) An example of a periodic arm motion pattern. (C) Top view of three
smarticles confined in a fixed ring, all programmed to synchronously execute the
driving pattern shown in (B). The video frames, aligned on the time axis of (B), show
one example of dynamically ordered collective “dance” that can spontaneously

emerge under this drive [see (E) and movie S3 for others]. (D) Simulation video
showing agreement with experiment in (C). We color-code simulated states
periodically in time and overlay them for three periods to illustrate the dynamical
order over time. (E) The system’s configuration space, built from nonlinear functions
of the three robots’ body coordinates (x, y, q). The steady-state distribution (blue)
illustrates the few ordered configurations that are spontaneously selected by the
driving out of all accessible system states (orange). Simulation data are shown; see
fig. S5B for experimental data and fig. S1 for details of how the configuration space
coordinates (q1, q2, q3) in (E) are constructed from the 3 × (x, y, q) coordinates.
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collisions, nonlinear boundary interactions,
and static friction lead to a large degree of
quasi-random motion (26), making this a
promising candidate system for exploring
our theory.
Reasoning that our fundamental assump-

tion of quasi-random configuration dynamics
would be most valid in systems with many
degrees of freedom, we also built a simulation
that would allow us to study the properties of
larger smarticle groups and explore different
system parameters (fig. S9). In this regime,
we used simulations to gather enough data to
sample the high-dimensional probability dis-
tributions for our analysis. In a simulation of
15 smarticles, we observed the tendency of
the ensemble to reduce average rattling over
time after a random initialization. For this
45-dimensional system (x, y, q for 15 robots),
the configuration-space dynamics are well ap-
proximated by diffusion, and so Eq. 3 holds,
as seen in Fig. 1C. In addition, we noted the
emergence of metastable pockets of local
order when groups of three or four nearby
smarticles self-organized into regular motion
patterns for several drive cycles (movie S2). A
signature of such dynamical heterogeneity can
be seen in the spectrum of the covariance
matrix C(q) from Eq. 1, as described in the
supplementary materials and fig. S10.
The transient appearance of dynamical

order in subsets of smarticle collectives raises
the question of whether our rattling theory
continues to hold for smaller ensembles. For
the remainder of this paper, we focus on en-
sembles of three smarticles (as in Fig. 1D),
which allows for exhaustive sampling of con-
figurations experimentally, as well as easier

visualization of the configuration space (as in
Fig. 2E). Both in simulation and experiment,
we found that this regime exhibits a variety
of low-rattling behaviors that manifest as dis-
tinct, orderly collective “dances” (Fig. 2, C and
D, and movie S3). Despite its small size, this
system is well described by rattling theory,
as evidenced by the empirical correlation be-
tween rattling and the steady-state likelihood
of configurations (Fig. 1D, bottom).
We consider self-organization as a conse-

quence of a system’s landscape of rattling val-
ues over configuration space. This rattling
landscape is specific to the particular drive
forcing the system out of equilibrium, because
different drives will generally produce differ-
ent dynamical responses in the same system
configuration. When the three-smarticle en-
semble is driven (under the pattern in Fig. 2B),
the range of observed rattling values is so large
that the lowest-rattling configurations—and
consequently thosewith thehighest likelihood—
account for most of the steady-state proba-
bility mass. More than 99% of probability
accumulates in these spontaneously selected
configurations, which represent only 0.1% of
all accessible system states (Fig. 2E). More-
over, in these configurations the smarticles ex-
hibit an orderly response to driving (Fig. 2, C
and D, andmovie S4). In practice, the ensemble
spends most of its time in or nearly in one of
several distinct dances, with occasional inter-
ruptions by stochastic flights from one such
dynamical attractor to another (movie S5).
From the above observations, we can begin

to understand self-organization in driven col-
lectives. In equilibrium, order arises when its
entropic cost is outweighed by the available

reduction of energy. Analogously, a suffi-
ciently large reduction in rattling can lead
to dynamical organization in a driven system.
Moreover, such a reduction can require
matching between the system dynamics and
the drive pattern.
Through rattling theory we can predict how

self-organized states are affected by changes in
the features of the drive. We expect the struc-
ture of the self-organized dynamical attractors
to be specific to the driving pattern, as each
drive induces its own rattling landscape. To
test this, we programmed the three smarticles
with two distinct driving patterns (Fig. 3, A
and B, top), which we ran separately. The two
resulting steady-state distributions, although
each is highly localized to a few configurations,
are largely non-overlapping (Fig. 3, A and B,
bottom). This indicates that by tuning the drive
pattern, it may be possible to design the struc-
ture of the resulting steady state, and hence to
control the self-organized dynamics [see also
(28–30)].
As a proof of principle for such control, we

developed a methodology for selecting partic-
ular steady-state behaviors by combining drives.
By randomly switching back and forth between
drives A and B in Fig. 3, we define a compound
drive A+B (Fig. 3C andmovie S6). We predicted
that this drive would select only those config-
urations common to both A and B steady states
(Fig. 3, A and B, bottom), because having low
rattling under this mixed drive requires having
low rattling under both constituent drives. Our
experiments confirmed this (Fig. 3C), and we
were further able to quantitatively predict the
probability that a configuration would appear
under the mixed drive on the basis of its
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Fig. 3. Self-organized behaviors are fine-tuned to drive pattern. (A and
B) Changing the arm motion pattern slightly (top) affects which configurations self-
organize in the steady state (bottom, same 3D configuration space as in Fig. 2E).
(C) By mixing drives A and B as shown (top), we can isolate only those

configurations selected in both the steady states (circled in purple; see movie S6),
which follows as an analytical prediction of the theory. (D) This prediction (Eq. 4) is
quantitatively verified. All data shown are experimental and are reproduced in
simulation in fig. S7, along with derivations in the supplementary materials.
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likelihood in each constituent steady state
according to

1

pAþB
ss

º
1

pA
ss

þ 1

pB
ss

ð4Þ

as shown in Fig. 3D and fig. S7 (see sup-
plementary materials for derivation). This sim-
ple relationship suggests that by composing

different drives in time, one can single out
desired configurations for the system steady
state.
Moreover, we show that we can analytically

predict and control the degree of order in the
system by tuning drive randomness (Fig. 4)
as well as internal system friction (movie S7,
fig. S8, and supplementarymaterials). Because
driven self-organization arises when the sys-

tem has access to a broad range of rattling
values, tuning it requires modulating the
rattling of the most ordered behaviors rela-
tive to the background high-rattling states.
We can directly manipulate the rattling

landscape by modulating the entropy of the
drive pattern. This is done by introducing a
probabilistic element to the programmed arm
motion. At each move, we introduce a proba-
bility of making a random armmovement not
included in the prescribed drive pattern. In-
creasing this probability results in flattening
the rattling landscape: Ordered states experi-
ence an increase in rattling due to drive en-
tropy, whereas states whose rattling is already
high do not (Fig. 4A). Correspondingly, the
steady-state distributions become progressively
more diffuse (Fig. 4B), causing localized pockets
of order to giveway to entropy and “melt” away
—just as crystals might in equilibrium physics
[movie S8; see also (31)].
Even as the range of accessible rattling val-

ues in the system shrinks, the predictive rela-
tion of Eq. 3 continues to hold (Fig. 4C),
enabling quantitative prediction of how self-
organized configurations are destabilized. By
calculating the entropy of the drive pattern as
we tune its randomness, we derive a lower
bound on rattling for the system. Thus, we can
analytically predict how steady-state probabil-
ities change as a function of drive randomness,
as shown in Fig. 4D (up to normalization and
g; see supplementarymaterials for derivation).
This result confirms the simple intuition that
more predictably patterned driving forces of-
fer greater opportunity for the system to find
low-rattling configurations and self-organize
(see also fig. S6).
Our findings suggest that the complex dy-

namics of a driven collective of nonlinearly
interacting particles may give rise to a sit-
uation in which a new kind of simplicity
emerges. We have shown that when quasi-
random transitions among configurations
dominate the dynamics, the steady-state like-
lihood can be predicted from the entropy of
local force fluctuations, which we refer to as
rattling. In what we term a “low-rattling selec-
tion principle,” configurations are selected
in the steady state according to their rattling
values under a given drive.
Low rattling provides the basis for self-

organized dynamical order that is specifically
selected by the choice of driving pattern. We
see analytically and experimentally that the
degree of order in the steady-state distribution
reflects the predictability of patterns in driving
forces. Thus, driving patternswith low entropy
pick out fine-tuned configurations and dy-
namical trajectories to stabilize. Thismakes it
possible for one collective to exhibit different
modes of ordered motion depending on the
fingerprint of the external driving. Thesemodes
differ in their emergent collective properties,
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Fig. 4. Tuning self-organization by modulating drive randomness. Self-organization relies on the degree
of predictability in its driving forces, in a way that we can quantify and compute analytically. (A) As the
drive becomes less predictable (left to right in all panels), low-rattling configurations gradually disappear.
(B) The corresponding steady states, reflecting the low-rattling regions of (A), become accordingly more
diffuse. [(A) and (B) show simulation data and use the same 3D configuration space as Fig. 2E]. (C) All
three correlations fall along the same line (blue, simulation; black, experiment), verifying that our central
predictive relation (Eq. 3) holds for all drives here. The diminishing range of rattling values thus precludes
strong aggregation of probability, and with it self-organization. (D) Our theoretical prediction (solid black line)
indicating how the most likely configurations are destabilized by drive randomness. Colored lines track
the probability pss at 100 representative configurations q in simulation, and dashed black lines analytically
predict their trends. (movie S8; see supplementary materials for derivation). Two specific configurations
marked by pink and purple crosses are tracked across analyses.
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which suggests “top-down” alternatives to
control of active matter and metamaterial
design, where ensemble behaviors, rather than
being microscopically engineered, are dynam-
ically self-selected by the choice of driving
(30, 32).
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